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Abstract. The paper deals with combinations of the cutting angle method in global optimization and
a local search. We propose to use special transformed objective functions for each intermediate use
of the cutting angle method. We report results of numerical experiments which demonstrate that the
proposed approach is very beneficial in the search for a global minimum.
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1. Introduction

We study the following problem of global optimization:

f (x) −→ min subject to x ∈ S, (1.1)

where

S = {x = (x1, . . . , xn) ∈ R
n :

n∑
i=1

xi = 1, x1 � 0, . . . , xn � 0} (1.2)

is the unit simplex and f is a Lipschitz function defined on S. Problems of uncon-
strained global optimization with known boundaries of variables can be presented
in the form (1.1) (see Section 5 for details).

The cutting angle method and its various versions for the solution of problem
(1.1) have been proposed and studied in [1, 2, 6, 20, 21].

It was shown in [21] that the problem (1.1) can be reformulated as the global
minimization problem of the so-called IPH function over the unit simplex (IPH
is an abbreviation for an increasing positively homogeneous function of degree
one). Taking into account this result, we firstly study the problem (1.1) with an
IPH objective function f . The cutting angle method reduces this problem to the
sequence of auxiliary problems of the form:

hj(x) −→ min subject to x ∈ S (1.3)
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where

hj(x) = max
k�j

min
i∈I (lk)

lki xi, (1.4)

lk = (lk1, . . . , lkn) ∈ R
n, lki � 0, i = 1, . . . , n, I (lk) = {i : lki > 0},

k = 1, . . . , j, j � n.

The auxiliary problem (1.3) is essentially of combinatorial nature.
Note that the cutting angle method starts from a subset of m � n initial points,

which includes all vertices of the simplex S.
Let xj+1 be a solution of problem (1.3) and λj = minx∈S hj (x) = hj(x

j+1)

be the value of the problem. It can be shown (see, for example, [2, 5]) that λj =
hj(x

j+1) −→ f∗ := minx∈S f (x) as j → +∞ and any limit point of the sequence
(xj ) is a global minimizer of the function f over the simplex S. The cutting angle
method produces as a rule a sequence (f (xj )), which is not decreasing.

Assume now that the objective function f of problem (1.1) is Lipschitz. It was
proved in [21] that there exists a constant c′ > 0 such that for all c � c′ the
function f1(x) = f (x) + c can be considered as the restriction of an IPH function
to S, and so the cutting angle method can be applied to the function f1. Numerical
experiments demonstrated that the method is rather sensitive to the choice of the
constant c.

An auxiliary function hj defined by (1.4) is the maximum of a number of min-
type functions of the form x �→ mini lixi . If this number is fairly large, then the
global minimization of the function hj is time-consuming. So the cutting angle
method produces fairly quickly several first iterations and much more time is re-
quired for the next iterations. This observation leads to a fruitful idea to change
sometimes the objective function of the problem. In particular, it is convenient to
do such changes, using a combination of cutting angle method with a local search.

Consider the global minimization problem of a Lipshitz function f over the
unit simplex. Assume that a stationary point y of this function has been already
found (we can find it by a method of local optimization). In order to leave this
point we apply the cutting angle method. However, since this method does not
produce a decreasing sequence we cannot take advantage of the known value f (y)

of the objective function, even if we include y into the set of initial points. In
order to use this value, we transform the objective function f , that is, instead of
f we consider a certain transformed objective function ψ . As a rule we consider
a transformed function ψ such that ψ(x) � f (y) for all x, so we exclude all
stationary points y′ of the function f , for which f (y′) > f (y). Applying the
cutting angle method to a transformed function ψ and exploiting properties of this
function, we can find a new point ȳ such that f (ȳ) < f (y). Numerical experiments
show that applying appropriate transformed functions, we can sufficiently quickly
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leave a known stationary point y of the function f . Note that we use the cutting
angle method only for reduction of the known value of a transformed function, so
we do not need to find the global minimum of this function.

As a rule we consider non-smooth thransformed functions, even if the objective
function f is smooth, so we cannot use smooth methods of local optimization for
a local search.

In this paper we carry out a local search by a derivative free discrete gradient
(briefly DG) method (see [4]). Numerical expreriments show that this method can
jump over some stationary points, which are not local minimizers, so we can reduce
the number of stationary points, which we meet.

For applications of the cutting angle method to the minimization of a trans-
formed function ψ we need to add a constant c to ψ in order to obtain a function,
which can be considered as the restriction of an IPH function to S. Our numerical
experiments show that the cutting angle method is not very sensitive to the choice
of c, if we use this method only for reducing a value of an objective function. Thus
a combination with a local search allows us fairly quickly solve many problems.

The paper has the following structure. In Section 2 we provide some brief
preliminary definitions and results related to IPH functions. One of the versions
of the cutting angle method is described in Section 3. Transformed functions are
introduced and studied in Section 4. Problem of unconstrained optimization are
discussed in Section 5. Results of numerical experiments are presented in Section 6.

2. Preliminaries

Consider the n-dimensional space R
n. We shall use the following notation:

• I = {1, . . . , n};
• xi is the i-th coordinate of a vector x ∈ R

n;
• [l, x] = ∑

i∈I lixi is the inner product of vectors l and x;
• if x, y ∈ R

n then x � y ⇐⇒ xi � yi for all i ∈ I ;
• if x, y ∈ R

n then x 	 y ⇐⇒ xi > yi for all i ∈ I ;
• R

n+ := {x = (x1, . . . , xn) ∈ R
n : xi � 0 for all i ∈ I } (the nonnegative

orthant);
• S = {x ∈ R

n+ : ∑
i∈I xi = 1} (the unit simplex).

Recall that a function f defined on R
n+ is called increasing if x � y implies

f (x) � f (y); the function f is positively homogeneous of degree one if f (λx) =
λf (x) for all x ∈ R

n+ and λ > 0. We shall consider IPH (increasing positively
homogeneous of degree one) functions.

Let l = (li)i∈I ∈ R
n+. Consider the set of indices I (l) = {i ∈ I : li > 0}.

The vector l defines the so-called min-type function x �→ mini∈I (l) lixi , which we
denote by the same symbol l. Clearly a min-type function is IPH.
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We shall use the following notation for c ∈ R and l ∈ R
+
n :

(c/ l)i =
{

c/ li if i ∈ I (l),

0 if i 
∈ I (l).
(2.1)

The vector f (x0)/x0 is called the support vector of a function f at a point
x0 ∈ R

n+ \ {0}.
Subsequently we will use the unit vectors em = (0, . . . , 0, 1, 0, . . . , 0) with

I (em) = {m}. Clearly the vector l = f (em)/em can be represented in the form
l = f (em)em. We also have l(x) = f (em)xm for x ∈ R

n+.
The following statement can be found in [20, 21].

THEOREM 2.1. Let f be a Lipschitz function defined on the unit simplex S with a
Lipschitz constant L. Let c′ = 2L−minx∈S f (x). Then for each c � c′ the function
fc(x) = f (x) + c (x ∈ S) can be extended to an IPH function gc defined on R

n+.

Assume that the constant c′ is known and consider the problem (1.1):

f (x) −→ min subject to x ∈ S.

Let c � c′. Then the problem (1.1) is equivalent to the problem

fc(x) −→ min subject to x ∈ S,

which, in turn, is equivalent to the problem

gc(x) −→ min subject to x ∈ S.

Indeed, since gc is an extension of fc, numbers fc(x) and gc(x) coincide for x ∈ S.
Thus, the global minimization of a Lipschitz function over the unit simplex S

can be transformed to the global minimization of an IPH function over S.

3. Cutting angle method

In this section we give a brief description of a version of the cutting angle method
for solving problem (1.1) with an IPH objective function f . Note that an IPH
function is nonnegative on R

n+. We assume that f (x) > 0 for all x ∈ S. It follows
from positiveness of f that I (l) = I (x) for all x ∈ S and l = f (x)/x.

The cutting angle method

Step 0. (Initialization) Take points xk ∈ S, k = 1, . . . m, where m � n and
xk = ek for k = 1, . . . , n and xk 	 0 for k = n + 1, . . . , m. Let
lk = f (xk)/xk, k = 1, . . . , m. Define the function hm :

hm(x) = max
k�m

min
i∈I (lk)

lki xi = max

{
max
k�n

lkkxk, max
n+1�k�m

min
i∈I (lk)

lki xi

}
and set j = m.
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Step 1. Find a solution x∗ of the problem

hj(x) −→ min subject to x ∈ S. (3.1)

Step 2. Set j = j + 1 and xj = x∗.
Step 3. Compute lj = f (xj )/xj , define the function

hj(x) = max{hj−1(x), min
i∈I

l
j

i xi} ≡ max
k�j

min
i∈I (lk)

lki xi

and go to Step 1.

REMARK 3.1. An interpretation of the term “cutting angle method" can be found,
for example, in [20].

This algorithm can be considered as a version of the cutting angle method ([1,
2]). A more general version of this algorithm, known as the � - bundle method, has
been discussed in [18]. Convergence of the �-bundle method was proved in [18]
under very mild assumptions.

The cutting angle method provides a sequence of lower estimates for the global
minimum f∗ of (1.1) with an IPH objective function, which converges to f∗. The-
oretically this sequence can be used for establishment of a stopping criterion (see
[20] for details). Let

λj = min
x∈S

hj (x) = hj(x
j+1) (3.2)

be the value of the problem (3.1). Then

λj ≡ min
x∈S

hj (x) � min
x∈S

f (x).

Thus λj is a lower estimate of the global minimum f∗. It is known (see, for
example, [20]), that λj is an increasing sequence and λj → f∗.

Unfortunately the cutting angle method constructs the sequence, which is not
necessary decreasing: it is possible that f (xj+1) > f (xj ) for some j .

The most difficult and time-consuming part of the cutting angle method is solv-
ing the auxiliary problem (3.1). A method for the solution of this problem was
proposed in [5]. Some modifications of this method (and corresponding modific-
ations of the cutting angle method) are discussed in detail in [6]. We use these
modifications for numerical experiments.

Only one value of the objective function is used at each iteration of the cutting
angle method. (Some modifications of this method require to evaluate a few val-
ues of the objective function at each iteration.) This observation shows that it is
beneficial to apply cutting angle method for the minimization of functions, whose
evaluation is very time-consuming. In particular, this method can be used for the
minimization of marginal functions

f (x) = max
y∈a(x)

ϕ(x, y),
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where a(x) is a set-valued mapping with compact images and ϕ is a continuous
function. (See [7] for details.)

Numerical experiments show that the cutting angle method is able to find only
approximate global minimizers. One of the main drawbacks of this method is a
slow convergence of the lower estimates λj for the global minimum. Often an
approximate global minimizer can be found sufficiently quickly, however we need
to spend a lot of time in order to confirm that a point, which we have, provides a
good approximation of the global minimum.

4. A combination of the cutting angle method and a local search

In this section we propose a combination of the cutting angle method and a local
search for the global minimization of a Lipschitz function f over the unit simplex.
Theorem 2.1 shows that such a problem can be transformed to a problem of the
global minimization of an IPH function over the unit simplex. We assume that for
each initial point ȳ a local method under consideration constructs a sequence (yk)

such that

1) (yk) tends to a stationary point of f ;
2) the sequence (f (yk)) is strictly decreasing: f (yk+1) < f (yk) for all k.

Starting from an arbitrary point ȳ0 we use the local search in order to obtain a
stationary point y1. Then the cutting angle method allows us to obtain a point ȳ1

such that f (ȳ1) < f (y1). Starting a local search from the point ȳ1 we obtain a new
stationary point y2 such that f (y2) < f (ȳ1) < f (y1) < f (ȳ0) and so on.

Applying the cutting angle method to the minimization of the function f we are
not able to take into account the known value of this function at a stationary point
y, which was found by a local search. In order to use this value we shall transform
a function f into a new function ψ . A function ψ is called a transformed function
of f (with respect to a point y) if

1) ψ(y) � f (y);
2) minx∈S ψ(x) = minx∈S f (x).

It follows from 2) that the set T (x∗) = {x ∈ S : f (x) � ψ(x∗)} is nonempty for
all x∗. Indeed if x̄ is a global minimizer of f over S then f (x̄) = minx∈S ψ(x) �
ψ(x∗) so x̄ ∈ T (x∗).

REMARK 4.1. It is assumed (for the implementation of the proposed below al-
gorithm), that at least one point from the set T (x∗) can be easily computed.

The simplest example of a transformed function is the function ψ(x) = f (x). We
now give some more complicated examples.
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PROPOSITION 4.1. The following functions are transformed ones for a function
f with respect to a point y:
1) ψ1(x) = min(f (x), f (y));
2) ψ2(x) = mink=1,... ,m minα∈Ak

ψ1(αx + (1 − α)xk), where 1 ∈ Ak ⊂ [0, 1],
xk ∈ S, k = 1, . . . , m;

3) ψ3(x) = mink=1,... ,m minα∈Ak
f (αx + (1 − α)xk), where A and xk are as in

item 2);
4) ψ4(x) = minβ∈B minα∈A

∑
k∈K βkf (αx + (1 − α)xk), where K is a finite set

of indices, B = {(βk)k∈K : ∑
k∈K βk = 1, βk � 0 (k ∈ K) }, 1 ∈ A ⊂ [0, 1],

xk ∈ S (k ∈ K);
5) ψ5(x) = minβ∈B minα∈A

∑
k∈K βkψ1(αx + (1 − α)xk), where K, B, A and xk

are as in item 4);
6) ψ6(x) = αψ1(x) + (1 − α)f (x) where α ∈ (0, 1).

Proof. We consider only functions ψ1, ψ2 and ψ4. A proof for other functions
is similar.
1) Function ψ1. Clearly ψ1(y) � f (y); we have also

min
x∈S

f (x) = min
x∈S

min(f (y), f (x)) = min
x∈S

ψ1(x).

2) Function ψ2. Since 1 ∈ Ak for all k, it follows that

ψ2(y) � ψ1(y) = f (y).

Consider a point x∗ ∈ S. Let k be an index and αk ∈ Ak be a number such that
ψ1(αkx

∗ + (1 − αk)x
k) = ψ2(x

∗) . Denote the point αky + (1 − αk)x
k by x̃. Then

ψ2(x
∗) = ψ1(x̃) =

{
f (y) f (x̃) � f (y),

f (x̃) f (x̃) � f (y).

Hence, if f (x̃) � f (y) then f (y) = ψ2(x
∗), if f (x̃) � f (y) then f (x̃) = ψ2(x

∗).
It means that y ∈ T (x∗) if f (x) � f (y) and x̃ ∈ T (x∗) if f (x̃) � f (y).

Let f∗ be the global minimum of f . Then we have for all x ∈ S:

ψ2(x) = min
k

min
α∈Ak

f (αx + (1 − αxk)) � f∗,

so minx∈S ψ2(x) � f∗. Let z be a global minimizer of f . Since 1 ∈ Ak for all k

it follows that ψ2(z) = f (z) = f∗ so minx∈S ψ2(x) � f∗. Thus minx∈S ψ2(x) =
minx∈S f (x).
3) Function ψ4. Since 1 ∈ A, we conclude that ψ4(y) � f (y). Let x∗ ∈ S.
Consider a set (βk)k∈K ∈ B and a number α ∈ A such that

ψ4(x
∗) =

∑
k

βkf (αx∗ + (1 − α)xk).

If f (αx∗ + (1 −α)xk) > ψ4(y) for all k ∈ K, then also ψ4(x
∗) > ψ4(x

∗) which is
impossible. So there exists k′ such that αx∗ + (1 − α)xk′ ∈ T (x∗) (In particular an
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index k′ such that f (αx∗ + (1 − α)xk′
) = mink∈K f (αx∗ + (1 − α)xk) enjoys this

property.) Let z be a global minimizer of the function f . Then ψ4(z) = f (z). On
the other hand ψ4(x) � f (z) for all x ∈ S, hence minx∈S f (x) = minx∈S ψ4(x).


REMARK 4.2. a) functions ψ2 − ψ5 depend on many parameters.
b) All functions ψ1 − ψ6 are nonsmooth.

Consider the following problem of global optimization:

f (x) −→ min subject to x ∈ S. (4.1)

We propose an algorithm for its solution. This algorithm is based on a combination
of the cutting angle method and a local search and on a choice of transformed
functions ψ . We consider an algorithm for a local search, which possesses the
following properties: for an arbitrary initial point z0 this algorithm constructs a
sequence (zk) such that

f (z0) > f (z1) > . . . f (zk) > . . . (4.2)

and each limit point of this sequence is a stationary point of the function f over
the simplex S.

Algorithm

Step 0. (Initialization) Choose an arbitrary starting point ȳ0. Set i = 0.
Step 1. Find a stationary point of f over S by the local method, starting from the

point ȳi . Denote this stationary point by yi and let fi = f (yi).
Step 2. Construct a transformed function ψi of the function f with respect to the

point yi .
Step 3. Take points xk = ek, k = 1, . . . , n, xn+1 = yi . Let lk = ψi(xk)/xk ,

k = 1, . . . , n + 1 and set j = n + 1. Construct the function hj , defined
by (1.4).

Step 4. Solve the problem

hj(x) −→ min subject to x ∈ S. (4.3)

Step 5. Let x∗ be a solution of the problem (4.3). Set j = j + 1 and xj = x∗.
Step 6. Compute ψ∗ = ψi(x∗). If ψ∗ < fi then find a point x′ ∈ T (x∗), set

i = i + 1, ȳi = x′ and go to Step 1.
Step 7. Otherwise compute lj = ψi(xj )/xj , define the function

hj(x) = max{hj−1(x), min
i∈I (lj )

l
j

i xi} ≡ max
k�j

min
i∈I (lk)

lki xi

and go to Step 4.
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REMARK 4.3. We use different stopping criterions for a local method and the cut-
ting angle method. When we apply a local method first we reduce the constrained
minimization problem to the unconstrained one using exact penalty functions. A
local method terminates when difference between the values of objective function
(the penalty function in the case of the constrained minimization) in two successive
iterations is less than a given tolerance ε > 0. We take ε = 10−4 in numerical
experiments. Theoretically we can use the stopping criterion proposed in [20] for
the cutting angle method. But the achievement of this criterion is time-consuming
for many large-scale problems. Therefore we used the following stopping criterion
in our numerical experiments: the number of iterations generated by the cutting
angle method is restricted by a number N : if after N iterations the cutting angle
method cannot leave a local minimizer, we accept this minimizer as a surrogate of a
global minimum. For example, in [9] where the proposed method has been applied
for solving data classification problems, the number of iterations generated by the
cutting angle method is restricted by 70.

PROPOSITION 4.2. Assume that the function f has a finite number of stationary
points. Then the algorithm terminates after finite number of iterations at a global
minimizer of f .

Proof. Consider the iteration (i). Step 1 of Algorithm at this iteration leads to
a stationary point yi of the function f . If yi is a global minimizer of f then the
transformed function ψi of the function f with respect to yi is the constant f (yi).
Using the cutting angle method, we can discover that the global minimum of ψi is
equal to f (yi). Since min{ψi(x) : x ∈ S} = min{f (x) : x ∈ S}, we can assert that
yi is a global minimizer.

Now let us consider the case where yi is not a global minimizer of f . First as-
sume that yi is a global minimizer of the transformed function ψi . We can discover
it by applying the cutting angle method. Let x̃i ∈ T (yi). Then we have

f (x̃i) � ψi(yi) = min{ψi(x) : x ∈ S} = min{f (x) : x ∈ S},
so x̃i is a global minimizer of f . Assume now that yi is not a global minimizer
of ψi . Since the cutting angle method converges to a global minimizer, its applic-
ation to the transformed function ψi leads to a point ȳi+1∗ such that ψ(yi+1∗ ) <

ψ(yi) � f (yi). Let ȳi+1 ∈ T (yi+1∗ ). Then f (ȳi+1) � ψ(yi+1∗ ). Starting a local
search from the point ȳi+1 we obtain a new stationary point yi+1. Due to (4.2) we
have f (yi+1) < f (yi), so yi+1 
= yi . Since the function f has a finite number of
stationary points, the algorithm terminates after a finite number of steps. 


The implementation of this algorithm requires to clarify some points.
1) Step 1 of the Algorithm includes the search for a stationary point. We use the
so-called discrete gradient (DG) method (see [3, 4]) for a local search. This is
a derivative free method of nonsmooth optimization. Our numerical experiments
allow us to suppose that the DG method with a certain adjustment of parameters
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can jump over some stationary points, which are not local minima. The possibility
to jump over stationary points is one of the main reasons for exploiting of DG
method. However, different local methods can be useful for a local search for some
classes of objective functions.
2) We consider only transformed functions ψ , which enjoys the following property:
ψ(x) � f (x) for all x ∈ S. This property allows us to exploit the known (record)
value f (yi) of the function f at the iteration i and to avoid stationary points y

such that f (y) > f (yi). For many transformed functions ψi the point yi is a
global maximizer. So we use the cutting angle method in order to leave the global
maximum (it is impossible if yi is a global minimizer, since in such a case the
function ψi is constant.)
3) Only two types of transformed functions have been used in numerical experi-
ments. First, at each iteration i we consider the function ψi

1:

ψi
1(x) = min(f (x), f (yi)).

This function does not depend on parameters. Its plot contains many flat pieces,
which correspond to its global maximum. We also consider the function ψi

2:

ψi
2(x) = min

k∈I
min
α∈Ak

ψ1(αx + (1 − α)ek),

where Ak = {0.2, 0.4, 0.6, 0.8, 1} for all k = 1, . . . , n. Both of these types of
functions were examined in Proposition 4.1. For functions ψi

2 we choose vertices
ek of the unit simplex as points xk in Proposition 4.1 (this is the most natural choice
for the simplex).

REMARK 4.4. The choice of the sets Ak, k = 1, . . . , n, depends on the problem
under consideration and in particular, on the number of variables. The number of
elements of Ak should be large enough in order to obtain a good minorant for the
objective function f . On the other hand it should not be too large, otherwise we will
have a large number of objective function evaluations at each iteration of the cutting
angle method. Numerical experiments show that the best choice in this situation is
to consider sets Ak , which contain 4-7 points. In our numerical experiments Ak

consists of 5 elements for all k = 1, . . . , n as was shown above.

Some numerical experiments were carried out with the proposed Algorithm.
Description of these experiments and results obtained can be found in Section 6.

5. Unconstrained minimization

Consider the following problem of unconstrained global optimization

f (x) −→ min subject to x ∈ R
n. (5.1)

Let x∗ be a global minimizer of (5.1). Assume that we know a vector of lower
bounds (ai)i∈I and a vector of upper bounds (bi)i∈I of the unknown point x∗. Let
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x′
i = xi − ai and t = ∑

i∈I (bi − ai). Then x′
i � 0 and

∑
i∈I x′

i � t . Let zi =
x′

i/t, (i = 1, . . . , n) and zn+1 = 1 − ∑
i∈I zi . Then z1 � 0, . . . , zn � 0, zn+1 � 0

and
∑n+1

i=1 zi = 1. Thus, the change of variables allows us to substitute the problem
(5.1) for the following problem of global minimization over the unit simplex S∗ ⊂
R

n+1:

g(z1, . . . , zn) −→ min subject to z = (z1, . . . , zn, zn+1) ∈ S∗.

This problem can be solved by the proposed Algorithm.

REMARK 5.1. It follows from the aforesaid that the problem

f (x1, . . . , xn) −→ min subject to
∑

i

xi � 1, xi � 0, i = 1, . . . , n

(5.2)

can also be solved by the proposed Algorithm.

We now consider the following problem, which arises in cluster analysis (see
[8] for details).

Let A = {ap}p∈P be a given finite subset of R
n. Consider a set X = {xq}q∈Q ⊂

R
n, where Q is a finite set of indices. The deviation from a point ap ∈ A to the set

X is equal to d(ap,X) = minq∈Q ‖xq − ap‖. The total deviation from the set A to
the set X is equal to

d(A,X) =
∑
p∈P

d(ap,X) =
∑
p∈P

min
q∈Q

‖xq − ap‖.

We are interested in the situation, where the cardinality |Q| of the set X is much
less then the cardinality |P | of the set A. In such a case we can consider X as a
certain approximator of A. The collection of points (x̄q)q∈Q can be considered as
the best approximator of the cardinality |Q| if∑

p∈P

min
q∈Q

‖x̄q − ap‖ = min
x1,... ,x |Q|∈Rn

∑
p∈P

min
q∈Q

‖xq − ap‖.

If |Q| = 1 then the best approximator x̄ (of cardinality one) can be found as a
solution of the following problem of convex programming:∑

p∈P

‖x − ap‖ −→ min subject to x ∈ R
n.

We can consider the vector x̄ as a centre of the set A. If |Q| = 2, we have the
following complicated problem of global optimization:∑

p∈P

min(‖x1 − ap‖, ‖x2 − ap‖) −→ min subject to (x1, x2) ∈ R
n × R

n.

(5.3)
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The objective function of this problem is saw-shape. Let

ai = min
p∈P

a
p

i , bi = max
p∈P

a
p

i , (i ∈ I ).

and (x̄1, x̄2) is a solution of problem (5.3). It is clear that ai � (x̄q)i � bi for q =
1, 2. Hence we can use the proposed algorithm in order to find the 2n-dimensional
vector ((x̄1)1, . . . (x̄

1)n, (x̄
2)1, . . . , (x̄2)n).

The proposed method for the solution of the problem (5.3) has been applied in
the study of Wisconsin Diagnostic Breast Cancer ([16]) and BUPA Liver Disorders
([11]) databases. First a special procedure for feature selection was used, which
allowed us to reduce the number of variables (see [8] for details). We consider the
first database with three variables and the second one with four variables, so the
dimension of problem (5.3) was 7 and 9, respectively. In both cases the method
allows us to obtain the descriptions of the sets under consideration which are as
good as known results.

6. Results of numerical experiments

In this section we discuss results of numerical experiments for some known test
problems. The section consists of two parts. First of them contains some small
scale problems and detailed discussions of the results of numerical experiments
with these problems. In particular we compare results obtained by means of trans-
formed functions ψ1 and ψ2. Examples of problems with parametric dimension
(in particular, large scale problems) and corresponding results are presented in the
second part.

We used a personal computer IBM Pentium-S with CPU 150 MHz for numerical
experiments. The codes have been written in Fortran-90 for MS-DOS.

REMARK 6.1. We report, in particular, the number of iterations produced by the
cutting angle method. Note that the initialization of this method consists of n + 1
iterations. (See Step 0 of the cutting angle method and Step 0 of the proposed
Algorithm.) Assume, for example, that n = 50 and there are 52 iterations of the
cutting angle method. It means that the cutting angle method has been implemented
only once after Initialization.

Small scale problems

Below we give detailed description of results of numerical experiments for some
well-known small scale problems of global optimization. The function ψ1 has been
used in these experiments.

PROBLEM 6.1. (see [13], p. 246).

f (x) = max{ϕ1(x), ϕ2(x)}
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where

ϕ1(x) = −1.0 + 8x1 + 8x2 − 32x1x2,

ϕ2(x) = 3.6 − 12x1 − 4x3 + 4x1x3 + 10x2
1 + 2x2

3 ,

x ∈ S =
{

x ∈ R
3 | x � 0,

3∑
i=1

xi = 1

}
.

Numerical results for Problem 6.1: An initial point is x0 = (0, 0, 1) with f (x0) =
1.60000. An approximate stationary point x1 = (0.1784, 0.0001, 0.8215) with
f (x1) = 0.42742 has been found by the DG method within 36 iterations. Then
the cutting angle method was applied. This method required five iterations in order
to leave the stationary point and to find a new point x2 = (0.4286, 0.4286, 0.1428)

with f (x2) = 0.00816. Then a global minimizer x∗ = (0.5387, 0.3705, 0.0908)

with f (x∗) = −0.11344 was found by the DG method within 35 iterations.

PROBLEM 6.2. (see [13], subsection 5.5.2).

f (x) = −
10∑
i=1

1

‖x − ai‖2 + ci

where

x ∈ S∗ = {x ∈ R
2
+ : x1 + x2 � 20}.

The vectors ai = (ai
1, a

i
2), i = 1, . . . , 10 and the vector c = (c1, . . . , c10) can

be found in [13], p.256.

Numerical results for Problem 6.2: An initial point is x0 = (1, 1), f (x0) =
−0.83971. An approximate stationary point x1 = (7.9749, 1.0323) with f (x1) =
−1.47140 has been found by the DG method within 28 iterations. The cutting angle
method was applied, which required 37 iterations in order to leave the stationary
point and to find a new point x2 = (3.4189, 3.2441) with f (x2) = −1.54842.
Then a global minimizer x∗ = (3.9176, 3.9814) with f (x∗) = −2.14522 was
reached by the DG method within 29 iterations.

PROBLEM 6.3. (Shubert function, see [15, 17]).

f (x) =
2∏

i=1


 5∑

j=1

j cos((j + 1)xi + j)


 ,

−10 � xi � 10, i = 1, 2.
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Numerical results for Problem 6.3: An initial point is x0 = (2, 2), f (x0) =
0.67721. The DG method calculated the first approximate stationary point x1 =
(9.0691,−2.0072) with f (x1) = −16.2861 within 36 iterations. A new point
x2 = (−7.0461, 1.7874) with f (x2) = −38.66532 has been found by the cutting
angle method within 27 iterations. Then the DG method was again applied. A new
approximate stationary point x3 = (−7.0835, 1.8057) with f (x3) = −39.58874
was found by this method within 39 iterations. The cutting angle method required
40 iterations in order to leave the stationary point x3 and to find a new starting
point for the DG method x4 = (−1.6642,−7.0859) with f (x4) = −79.13844.

Finally a global minimizer x∗ = (−1.4251,−7.0853) with f (x∗) = −186.73091
was reached by the DG method within 45 iterations.

REMARK 6.2. It is known (see [15, 17] and references therein) that the Shubert
function has 760 local minimizers. Different initial points lead to the calculation of
different local minimizers. We have checked many initial points and for all of them
the number of local minimizers which appeared, when the combination of the DG
method and the cutting angle method was applied, does not exceed 2.

PROBLEM 6.4. (Shekel function, see [10, 17]).

f (x) = −
N∑

j=1

1
4∑

i=1

(xi − aij )
2 + cj

,

0 � xi � 10, i = 1, 2, 3, 4.

We consider N = 5, 7, 10. An initial point is x0 = (0, 0, 0, 0). The values of
aij , i = 1, 2, 3, 4, j = 1, . . . , N and cj , j = 1, . . . , N are given, for example,
in [17]. Note that the objective function of Problem 6.2 is similar to the objective
function of Problem 6.4.

Results of numerical experiments for N = 5, 7, 10 are presented in Table 1.
First the DG method was applied in order to find an approximate stationary point,
then the cutting angle method was exploited and then again the DG method, which
leads to a global minimizer. Correspondingly Table 1 consists of three parts. We use
the following notation: DG is the DG method, CAM is the cutting angle method,
m - number of iterations and f the value of the objective function.

In Table 2 results of numerical experiments with Problems 6.1, 6.2, 6.3 and 6.4
for functions ψ1 and ψ2 are presented. We use the following notation: itloc is the
total number of iterations by the local method, itcut is the total number of iterations
by the cutting angle method, loc is the number of computed local minimizers, fun is
the number of the objective function evaluations, cut is the number of the objective
function evaluations, which are used by the cutting angle method, t is CPU time.
We give a CPU time which was necessary for the computation of the known global
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Table 1. Numerical results for Problem 6.4

N = 5 N = 7 N = 10

m f m f m f

DG 1 −0.27312 1 −0.29362 1 −0.32173

81 −5.05520 79 −5.08767 82 −5.12848

CAM 1 −5.05520 1 −5.08767 1 −5.12848

7 −10.15320 7 −10.40282 7 −10.53628

DG 1 −10.15320 1 −10.40282 1 −10.53628

2 −10.15320 35 −10.40294 38 −10.53640

Table 2. Comparison of results for the functions ψ1 and ψ2.

Problem Function itloc itcut loc fun cut t

6.1 ψ1 57 5 1 606 5 0.76

ψ2 46 5 1 751 15 0.05

6.2 ψ1 35 37 1 323 78 16.23

ψ2 30 4 1 301 60 0.05

6.3 ψ1 97 67 2 892 189 56.02

ψ2 58 5 1 540 105 0.05

6.4 (N = 5) ψ1 55 6 1 449 6 0.06

ψ2 55 6 1 593 150 0.06

6.4 (N = 7) ψ1 62 6 1 530 6 0.05

ψ2 62 6 1 674 150 0.06

6.4 (N = 10) ψ1 64 6 1 527 6 0.06

ψ2 64 6 1 671 150 0.06

minimum. All problems have been solved with the precision δ = 10−4, that at last
point xk :

f (xk) − f ∗ � 10−4

where f ∗ is the global minimum of the function f .
Results presented in Table 2 show that for Problems 6.1, 6.2 anf 6.3 the function

ψ2 allows one quickly to leave local minimizers and to obtain a good starting point
for the computation of a global minimizer. For the Problem 6.4 we got almost the
same results for both functions ψ1 and ψ2. The version of the algorithm with the
function ψ1 requires more iterations of the cutting angle method in order to leave
the stationary points. Therefore it needs much more CPU time to compute a global
minimizer with given precision. The version of the algorithm with the function ψ2
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requires a smaller number of iterations in order to leave the stationary points and as
a rule provides a good starting point for a local search. However, it requires much
more function evaluations.

Problems with parametric dimension

Here we consider three well-known test problems and also a test problem, which
was introduced by the authors in [5]. We use the following notation for the descrip-
tion of the test problems: f is the objective function, x0 is the starting point, x∗ is
the global minimum point.

PROBLEM 6.5. (Griewank, see [12] and also [17])

f (x) = 1

d

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1,

n∑
i=1

xi � 400, xi � −50, i = 1, . . . , n, d = 4000,

x0 = (x0
1 , . . . , x0

n), x0
i = −n, i = 1, . . . , n, x∗ = (0, . . . , 0), f (x∗) = 0.

PROBLEM 6.6. (Levy, see [14] and also [17]).

f (x) = sin2(πy1) +
n−1∑
i=1

(yi − 1)2(1 + 10 sin2(πyi + 1))

+ (yn − 1)2(1 + sin2(2πxn)),

yi = 1 + xi − 1

4
,

n∑
i=1

xi � 70, xi � −1, i = 1, . . . , n,

x0 = (0, . . . , 0), x∗ = (1, . . . , 1), f (x∗) = 0.

PROBLEM 6.7. (Bagirov and Rubinov, see [5]).

f (x) =
n∑

i=1

min{0, 10‖x − ai‖ − bi}, (n � 2), (6.1)

n∑
i=1

xi = 1, xi � 0, i = 1, . . . , n,
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where ‖ · ‖ is 2-norm, ai, i = 1, . . . , n are n-vectors with coordinates

ai
j =

{
(n + 1)/2n if j = i,

1/2n if j 
= i.

b1 = 4, bi = bi−1 − 2

n − 1
, i = 2, . . . , n.

x0 = (0, . . . , 0, 1), x∗ = a1 ≡
(

n + 1

2n
,

1

2n
. . . ,

1

2n

)
, f (x∗) = −4.

PROBLEM 6.8. (Pardalos, Ye and Han, see [19]).

f (x) =
k−1∑
i=1

(
xi − ri

ri+1
xi+1

)2

+
n∑

i=k+1

x2
i −

(
k∑

i=1

xi

)2

,

n∑
i=1

xi = 1, xi � 0, i = 1, . . . , n, k = [n/2] + 1,

ri = r ′
i∑k

i=1 r ′
i

where r ′
i = 5|sin(i)| + 0.1, i = 1, . . . , k.

x0 = (0, . . . , 0, 1), x∗ = (r1, . . . , rk, 0, . . . , 0), f (x∗) = −1.

REMARK 6.3. Problem 6.7 can serve as a certain simplification of problem (5.3).
Note that the function (6.1) is a saw-shape and has very many local minimizers.
For example, for n = 3 the number of the points of local minima is 7 and for n = 4
it is 15.

Results of numerical experiments are presented in Table 3. Here we use the
same notation as in Table 2; n is the number of variables. We present results of
numerical experiments only with the function ψ2. For the function ψ1 correspond-
ing results are essentially worse. For example, for the Problem 6.7 with n = 5 the
CPU time, related to the version of the Algorithm with the transformed function
ψ1, was 23.18 sec., which is about 210 times more than the corresponding time for
the version, related to the transformed function ψ2.

PROBLEM 6.9. In [9] the proposed method has been applied for solving data
classification problems. The minimization of (5.3) was used for this purpose. For a
stopping criterion we restricted the number of iterations generated by the cutting
angle method by 70 (see Remark 4.3). We cannot assert that we obtain a global
solution to the problem (5.3). However, for all databases under consideration the
results obtained by the proposed method are better than those obtained by only a
local method.
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Table 3. Numerical results for Problems 6.5, 6.6, 6.7 and 6.8.

Problem n itloc itcut loc fun cut t

6.5 5 119 5 1 1134 25 0.28

10 192 12 1 4092 60 0.71

20 1085 22 1 34605 120 3.95

30 1121 30 1 50531 150 5.55

50 801 50 1 61151 250 14.11

6.6 5 65 12 1 1848 1110 0.58

10 78 12 1 2331 660 0.22

20 71 22 1 4952 2310 0.43

30 59 32 1 8076 4960 0.88

50 61 52 1 27323 13260 8.45

6.7 5 45 5 1 936 25 0.11

10 86 10 1 4150 50 0.50

20 55 20 1 14419 100 3.19

30 48 30 1 30637 150 11.36

50 49 50 1 48334 250 41.31

6.8 5 72 1 1 1932 5 0.11

10 486 5 2 37908 22 4.95

20 173 0 0 29934 0 62.84

30 156 0 0 39826 0 74.34

70 1097 70 1 119961 350 286.56

7. Concluding remarks

Here we present some conclusions, which follow from the numerical experiments.
1. Results of numerical experiments show that the proposed method is able to
leave stationary points and to find a global minimizer. Moreover the cutting angle
method does not sort all local minimizers. The combination of DG and the cutting
angle method is able to jump over many local minima. No more than two local
minimizers different from the global one have appeared at each example under
consideration.
2. When a stationary point yi is known, we consider a new transformed function
ψi (with respect to this point), which depends on yi . A small amount of min-type
functions is used at some first iterations of the cutting angle method. So this method
can rather quickly find a point, where value of the objective function is less than
at the stationary point. Nevertheless numerical experiments show that the cutting
angle method is much more time-consuming than a local search by DG.
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3. Let

c � 2L − min
x∈S

f (x) (7.1)

where L is the Lipschitz constant of f . Then (see Theorem 2.1) the function f (x)+
c is the restriction of an IPH function to S. The lower bound 2L − minx∈S f (x) is
unknown. It follows from (7.1) that we can consider a sufficiently large number
as c. However, numerical experiments show that large values of c lead to slow
convergence of the cutting angle method. Thus we need to find a not very large
number c such that (7.1) holds. Numerical experiments also demonstrate that we
can take a fairly small number c, when the cutting angle method is considered
only as means for leaving a local minimizer. Let Li be a Lipschitz constant of
a transformed function ψi , which is constructed with respect to point yi . Then
Li+1 � Li � L. If Li+1 < Li then we can decrease c.
4. A version of Algorithm has been studied, where the function f was used as
a transformed function ψ . Numerical experiments show that this version requires
much more iterations of the cutting angle method.
5. Various transformed functions can be used in order to replace the objective
function. We considered functions ψ1 and ψ2 in numerical experiments. Results
of numerical experiments allow us to assert that the effectiveness of the proposed
method strongly depends on these functions. This dependence becomes obvious
when the number of variables increases. The use of the second function allowed us
to obtain a fairly good starting point for a local search. An interesting and important
problem is describe and examine new transformed functions. This problem is the
subject of the further research.
6. Numerical experiments show that the convergence of the sequence of lower
estimates λk, which are constructed by the cutting angle method, is very slow, if
the objective function is constant. So, if the global minimizer y∗ has already been
obtained, the confirmation of the fact that y∗ is really a global minimizer, requires
very much computational time. This is one of the main drawbacks of the proposed
method. So, the question arises how to recognize that a given function is constant?

If the record value fi of the function f at the i-th iteration is close to the global
minimum f∗, then the relative range

maxx∈S ψi(x) − minx∈S ψi(x)

maxx∈S ψi(x)

of the function ψi is small, (especially, if the number c, which we add to this
function in order to apply the cutting angle method, is large) so this function is
almost constant. The cutting angle method works slowly in such a situation.
7. Numerical experiments with some well-known Lipschitz problems demonstrate
that the proposed approach allows us to solve fast enough many problems up to
n = 50 variables, using a personal computer IBM Pentium-S with CPU 150 MHz.
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